Come si risolvono gli asintoti?

Sommario

Come si risolvono gli asintoti?

Come si risolvono gli asintoti?

10:0411:21Clip suggerito · 37 secondiAsintoti Orizzontali e Asintoti Verticali - YouTubeYouTubeInizio del clip suggeritoFine del clip suggerito

Quando ci sono asintoti?

DEFINIZIONE: Un asintoto è una retta tale che la distanza tra essa e la curva della funzione f tende a 0 per x (asintoti orizzontali o obliqui) o per x che tende ad un punto ove la f non è definita o è discontinua (asintoti verticali).

Come si scrive l'equazione di un asintoto?

Una funzione razionale fratta (quoziente di due polinomi interi in x) ammette asintoto obliquo SE E SOLO SE il grado del numeratore supera di 1 il grado del denominatore; l'equazione dell'asintoto è y= Q (x), dove Q (x) è il quoziente della divisione del numeratore per il denominatore.

Come si trovano gli asintoti con i limiti?

Eventuali asintoti verticali possono essere trovati calcolando i limiti destro e/o sinistro per x→x0 con x0 punto di discontinuità della funzione. Se ALMENO UNO di questi due limiti risulta +∞ o −∞, diremo che la retta verticale x=x0 è un asintoto verticale per la funzione in esame.

Quando si ha un asintoto verticale?

In modo più rigoroso: La retta x=a è un asintoto verticale per la funzione f(x) se almeno uno dei limiti destro o sinistro per x che tende ad a è divergente (fa più o meno infinito). I punti “candidati” a ospitare asintoti verticali sono quelli che non appartengono al dominio (buchi o estremi).

Quando si ha un asintoto obliquo?

Ciò accade quando il dominio è un insieme limitato, quando i due limiti all'infinito sono finiti (asintoti orizzontali), quando i due limiti all'infinito sono infiniti ma non valgono le condizioni della definizione o ancora quando i due limiti agli estremi illimitati non esistono.

Post correlati: